近年来,随着大数据、云计算、人工智能和第五代通信技术的发展,现存的通信信道容量不再能满足新技术对信道容量爆炸式增长的需求。如果没有新的扩展信道容量的方法,那么信道在不久的将来必将遭遇其容量瓶颈。为了提高信道容量和频谱效率,在传统的光学物理领域,相位、偏振、时间、幅度、波长和频率等物理量已经被广泛地调查和研究。通过采用波分复用(WDM)、时分复用(TDM),频分复用(FDM)和偏振复用(PDM)等方法,信道容量已经被显著地提高。同时,无载波调制(CAP)、相移键控(PSK)、脉冲幅度调制(PAM)和正交幅度调制(QAM)等先进的调制技术也已经被广泛研究和应用于提高信道频谱效率的方案中。在自由空间通信(FSOC)和光纤通信(OFC)等领域,模式和空间被认为是物理领域仅存的还没有被充分研究和开发的领域。
在光通信领域,大量的研究表明携带轨道角动量(OAM)的涡旋光具有巨大的潜力改善信道容量和频谱效率,因而基于OAM的涡旋光通信技术吸引了越来越多人的注意力,并逐渐成为光通信领域的研究热点。理论上,携带不同拓扑电荷的涡旋光是彼此相互正交的,且其值在理论上是无穷大的。因此,携带OAM的涡旋光为光通信复用技术的发展提供了一个新的复用领域,通过复用OAM模式可实现空分复用(SDM)。根据上述分析,SDM技术与其它复用技术一样都具有改善信道容量和频谱效率的较大潜力。然而,涡旋光信道间严重的信道串扰问题严重地制约了涡旋光远距离通信技术的发展和产业化。王安东等人提出一种利用低密度奇偶校验码(LDPC)的方法和少模光纤方法,降低信道间串扰,增加光纤传输距离。朱龙等人提出一种利用波分复用和OAM复用相结合的方法和具有较高模式组分离度的OAM光纤方法,实现了18公里的低串扰传输。陈思等人提出一种利用多输入多输出(MIMO)信道均衡方法,降低涡旋光信道间串扰。
然而,由于受信道串扰影响,上述内容仅仅实现涡旋光在光纤中近距离的传输,不能满足现在光纤通信远距离传输的需求。因此,如何利用OAM空分复用实现涡旋光在光纤信道中低串扰和远距离传输,尚存在诸多难点和挑战。